Next Generation Bus Signal Priority

Ed Alegre, PTP Los Angeles County Metropolitan Transportation Authority (LA Metro)

Program Background

Los Angeles Region

- * 4,083 square miles
- * 88 incorporated cities and unincorporated County areas
- * Over 10,000 signalized intersections
- * Diverse traffic control environment
- Other municipalities providing fixed route bus service
- * Nearly 3,000 buses in service daily

Pilot Demonstration

- * Crenshaw Boulevard
 - * Smart-Bus and Wireless Communications
 - * \$4.3 Million
 - * 10.5 miles
 - * 51 signal priority equipped intersections
- * Partners

Metro

 Cities of Los Angeles, Gardena, Hawthorne, Inglewood, County of Los Angeles

CSP Expansion

- * Foothill Transit (Line 187)
 - * 42 intersections
 - * 5 partners (Azusa, Arcadia, Duarte, Monrovia, Pasadena)
- * Torrance Transit (Route 3)
 - * 80 intersections
 - * 5 partners (County of LA, Long Beach, Carson, City of LA, Torrance)

CSP Expansion

- * Culver City Bus (Systemwide)* 103 intersections
- * Gardena Transit GTrans (Line 1)
 - * 26 intersections
- * Metro Rapid (Line 740)
 - * 25 intersections in Pasadena
 - * Conversion from loop and transponder to wireless

Current CSP Architecture and Technology

"Smart Bus" Approach

- * On-Bus Hardware
 - * On-Board Computer
 - * Automated
 - * Real-time vehicle location information (GPS)
 - Wireless radio transmitting priority request
 - * 2.4Ghz spread spectrum

Wireless Communications

- * Communication Infrastructure
 - * IEEE 802.11b (Wi-Fi) Wireless local area network (WLAN)
 - * Access Points
 - * Bridges
 - * Clients

Traffic Signal Interface

* Signal Control Hardware

- * 170E, 170ATC/HC11, 2070, ASC/2, ASC/3
- * Signal Firmware
 - * BiTran/McCain, Econolite, LA
 County (LACO-4), City of LA 2070,
 D4 (future)

Traffic Signal Timing Modifications

* Green Extension

- * Typically 8-10 seconds
- * Up to 10 percent of the cycle time
- Typically not on back-to-back cycles
- * Early Green
 - * Typically 8-10 seconds

CSP System Architecture

Why Next Generation technologies?

Upgrades to Metro Buses

- Metro's Advanced Transportation Management System (ATMS)
 Update
 - includes integration of transit signal priority
- Metro's Bus and Rail Fleet
 Systems Strategic Plan
 - * Mobile Gateway Router

CSP System Revised Architecture

Upgrades to CSP Network and Monitoring

* Migrate Central BSP Network to the Cloud

- * Phase 1 Existing Network Improvements Clean-up
- * Phase 2 Cloud Infrastructure Setup BSP Database
- Phase 3 Cloud Reporting Implementation Remote Client Access for Metro, Torrance Transit, and Culver CityBus; Reporting Web Server
- * Phase 4 BSP Web Service Receive Request/DTGP Data
- * Enhance the Cloud Reporting Software

New Central BSP Network

Next Generation BSP Study

- Original CSP architecture was developed and deployed over 15 years ago.
 - * What other types of signal priority is being deployed nationwide?
 - Evaluate existing CSP approach
 - Evaluate new technologies that have advanced in the past few years
 - * How we should evolve signal priority in the region?

Nationwide Evaluation of Current BSP Practices

- * TriMet Portland, OR
- * AC Transit East Bay, CA
- * King County Metro Seattle, WA
- * Regional Transportation Authority (RTA) Chicago, IL
- Metropolitan Transportation Authority (MTA) New York, NY
- Los Angeles Department of Transportation (LADOT) Los Angeles, CA

Nationwide Evaluation of Current BSP Practices

			Local				
Attributes TriMet (Portland)		AC Transit King County (East Bay) Metro (Seattle)		RTA (Chicago)	MTA (New York)	LADOT (City of Los Angeles)	Metro CSP (Los Angeles County)
System Design							
BSP Architecture:	Distributed, on- bus/intersection hybrid	Distributed, on- bus priority request	Distributed, off- vehicle priority logic	Distributed, on- bus priority request	Centralized, TMC priority request	Centralized, TMC priority request	Distributed, on- bus priority request
Wireless Comm. Technology:	Proprietary (Opticom IR)	Proprietary (Opticom GPS 2.4 GHz)	Licensed WiFi (4.9 GHz Public Safety)	Unlicensed WiFi (5 GHz)	Commercial cellular (Verizon 3G/4G)	N/A (Presence Detection Loops)	Unlicensed WiFi (2.4 GHz)
Size/Scope of Deployment:	7 corridors 275 intersections	3 corridors 270 intersections	6 corridors 192 intersections	(In construction)	10 corridors 474 intersections	9 corridors 654 intersections	7 corridors 400 intersections
Year First Deployed:	2000	2015	2005	2017 (planned)	2010	2000	2002
Capabilities							
Priority Treatments:	 Early green Green extend 	 Early green Green extend Phase call 	 Early green Green extend Phase call 	 Early green Green extend Phase call 	 Early green Green extend Phase call 	 Early green Green extend Phase call 	Early greenGreen extend
Monitoring Capabilities	Controllers log BSP requests	Central CMS logs and reports on BSP requests	Controllers log BSP requests	Controllers log BSP requests and status	Central system logs BSP requests and status	Central TPM server logs BSP requests active signal control status	Controllers log BSP requests and action taken (early green/green extend)
Measured Benefits	 5-12% reduction in travel time 	Not yet collected	 25-34% reduction in travel time 35% reduction in travel time variability 	Not yet collected	14-18% reduction in travel time	 8% reduction in travel time 12% reduction in intersection delay 	 4-8% reduction in travel time 14% reduction in intersection delay

Existing CSP Assessment SWOT Analysis

Existing CSP Assessment Strengths

- * Proven technologies
- * Wireless LAN is fully IP addressable and expandable
- Signal Priority is distributed and independent of signal system type
- * Agreements with other agencies, and architecture is used county-wide.

Existing CSP Assessment Weaknesses

- * Pilot system was deployed over 15 years ago
- * Aging CSP technologies and equipment (on-bus)
- * Monitoring of performance through MOE's
- * BSP message is not NTCIP compliant
- * Proprietary solutions limit interoperability

Existing CSP Assessment Opportunities

- * Consolidating TSP and AVL in to single system
 - * Metro is upgrading its ATMS to incorporate TSP
- * Implementation of CV technologies
- * Upgrade equipment on-bus (i.e. routers)
 - Metro completed its Bus/Rail Strategic Plan and includes the roll-out of mobile gateway routers
- * Center-to-center equipment

Existing CSP Assessment Threats

- * DSRC as a standard
- * What is going to happen with DSRC?
- Vendors may not deliver open standard complaint equipment, locking the system into multiple proprietary solutions

Concept Exploration

* Goals:

- * Reliability, speed, and value of bus service
- * Needs:
 - * Cost effective
 - * Rapidly deployable
 - * Scalable
 - Adaptable and functional with traffic signal control and transit system management

- Advanced priority functions
- Performance measurement and data analysis
- Standardized communications and messages
- Not dependent on a particular vendor

Concept Exploration

- * Vehicle-to-Infrastructure (V2I) Connected Vehicle
- * Vehicle-to-Infrastructure (V2I) Cellular to Isolated Signal
- * Vehicle-to-Center (V2C) Cellular to Centralized TMC
- * Center-to-Center (C2C) Fully Centralized TOC and TMC
- * BSP-as-a-Service (BSPaaS) Cloud Application

Vehicle-to-Infrastructure (V2I) Connected Vehicle

Legend					
CAD/AVL	Computer-Aided Dispatch/ Automatic Vehicle Location				
DTGP	Decision to Grant Priority				
DTRP	Decision to Request Priority				
DSRC	Dedicated Short-Range Comm.				
MGR	Mobile Gateway Router				
PC	Industrial PC (Running CV apps)				
SIM	Subscriber Identity Module				
TOC	Transit Operations Center				
VLU	Vehicle Logic Unit				

* On-bus priority request logic

* Intersection-based priority granting logic

Roadside CV Radio Signal Controller Signal Cabinet

DSRC Antenna

1. Local intersection PC is required only if controller is not an Advanced Traffic Controller (ATC). If traffic agency has upgraded to ATC the BSP application and DTGP can reside on the controller.

2. DTGP functionality may reside on either PC or controller, depending on architecture.

Vehicle-to-Infrastructure (V2I) Cellular to Isolated Signal

Vehicle-to-Center (V2C) Cellular to Centralized TMC

Center-to-Center (C2C) Fully Centralized TOC and TMC

BSP-as-a-Service (BSPaaS) Cloud Application

Next Gen BSP Evaluation Summary

Concept	Priority Request (Logic Location L	Priority Granting Logic Location	Support for Advanced Priority Functions	Maturity of Technology	Compatibility with Existing System	Cost Effectiveness	Maintain- ability	Expansion Potential		Overall Assessment	Overall Assessment
								Fleet	Signal Systems	(Near-Term)	(Long-Term)
1. V2I Connected Vehicle		6000 6000	•	O	O	O	O	O	•	O	•
2. V2I Cellular to Isolated Signal		0000 0000	O	•	•	•	•	•		0	0
3. V2C Cellular to Centralized TMC		₹ M	O	•	0	•	•	•	0	•	0
4. C2C Centralized TOC and TMC	E C C C C C C C C C C C C C C C C C C C	III ™C	•	•	0	•	0	•	0	0	0
5. BSP-as-a-Service Cloud-Native	\bigcirc	\bigcirc	•	O	0	•	•	•	•	O	•

Ratings key:

0 1 (low)

2 (low-mid)

0

3 (medium)

4 (mid-high)

5 (high)

How should CSP evolve in the LA Region?

- Operate, maintain, and improve on the existing CSP system
- * Consider Piloting V2I Connected Vehicle Concept
 - * Deploy pilot on a small municipal operator/line
- * Assess Readiness and Pilot for BSP-as-a-Service
 - * Prepare industry white paper
 - Full deployment may take years on Metro Rapid service, therefore, small pilot may be more desirable to test out architecture

M _M

Thank You!

Questions?

<u>Contact</u> Ed Alegre, PTP AlegreE@metro.net

